2024-02-15 00:28:14 -08:00

57 lines
1.5 KiB
TypeScript

import "dotenv/config";
process.env.OPENAI_API_KEY;
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { createRetrievalChain } from "langchain/chains/retrieval";
import { createStuffDocumentsChain } from "langchain/chains/combine_documents";
import { CheerioWebBaseLoader } from "langchain/document_loaders/web/cheerio";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
const chatModel = new ChatOpenAI({});
const loader = new CheerioWebBaseLoader("https://docs.smith.langchain.com/");
const docs = await loader.load();
const splitter = new RecursiveCharacterTextSplitter();
const splitDocs = await splitter.splitDocuments(docs);
const embeddings = new OpenAIEmbeddings();
const vectorstore = await MemoryVectorStore.fromDocuments(
splitDocs,
embeddings
);
console.log('vectorstore', vectorstore)
const retriever = vectorstore.asRetriever();
const prompt = ChatPromptTemplate.fromTemplate(
`Answer the following question based only on the provided context:
<context>
{context}
</context>
Question: {input}`
);
const documentChain = await createStuffDocumentsChain({
llm: chatModel,
prompt,
});
const retrievalChain = await createRetrievalChain({
combineDocsChain: documentChain,
retriever,
});
const res = await retrievalChain.invoke({
input: "What is langsmith",
});
console.log(res);